O.P.Code: 23HS0801

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. I Year I Semester Regular & Supplementary Examinations December/January-2024/2025

			CHEMISTRY	er/Ja	nua	ry-9	2024/2025
	<i>P</i> PN *		(Common to CCM CVC				
	711	ne:	e: 3 Hours (Common to CSM, CIC, CAD, CCC, CAI & CIA)				
		.53	PART-A	M	ax.	Ma	rks: 70
	1	_	(Answer all the Overtions 10, 2, 2007				
	1			~	Ω1		
		b	Give Heisenberg Uncertainty principle.		01	L1	
		c	Define Semiconductor.		01	L1	
		d	Define Nanomaterial.		02	L1	
		e	Write Single electrode potential.		02	L1	
		f	What is Primary Battery.		03	L1	2M
		g	What is Monomer?		D3	L1	2M
		h	What is Polymerization?	CO		L1	2M
		1	Write Beer- Lambert's law.	CC		L1	2M
		j	Define Mobile phase.	CC		L1	2M
			PART-B	CC)6	L1	2M
			(Answer all Five Units $5 \times 10 = 50$ Marks)				
			HINTE T				
	2	a l	Explain Planck's Quantum Theory				
		b 1	Write short notes on Wave-Particle duality of matter.	CO	1	L2	5M
			0.70	CO	1	L2	5M
3	3	I	Illustrate the molecular orbital diagram of O_2 ⁺ and O_2 ² . Explain its bond order and magnetic property based on MOTAL.				
		0	order and magnetic property based on MOT theory.	CO	1	L2	10M
4	1	a E	explain about p-type and n-type semiconductor.				
		b D	Discuss about Type Land Type semiconductor.	CO	2 1	L2	5M
			Discuss about Type-I and Type-II Superconductors with examples.	CO		L 2	5M
5		a D	iscuss the classification and				OIVE
	ì	h O	iscuss the classification and properties Graphine nanoparticles.	CO2	. 1	L 2	5M
			utline the important applications of Graphine nanoparticles.	CO ₂		2	5M
			ALFARET AND		-		SIVI
6	2	ı w	hat is single electrode potential? Calculate the single electrode potential zinc in 0.05M ZnSO ₄ solution at 298 15 K (F ⁰ = 2 ⁺ = 0.762M)	CO1		2	
		01	zinc in 0.05M ZnSO ₄ solution at 298.15 K. $\{E^0_{\text{Zn/Zn}}^{2+} = -0.763\text{V}\}$	CUS	L	13	5M
	JD.	Ex	Explain construction and working of Daniel cell. $\{E \in \mathbb{Z}_n/\mathbb{Z}_n = -0.763 \text{ V}\}$	CO1	1r	•	
7			Op	CO ₃		2	5M
7		W1	rite a note on construction, cell reactions and applications of Lithium-	COA	т	,	407 -
		lor	rechargeable cell.	CU4	L	Z	10M
			UNIT-IV				
8		Ex	plain different types of polymerizations with exemples in L	~~-			
			On.	CO ₅	L	2]	10M
9	a	Wr	ite the preparation, properties and application of Power Co. 11				
				CO ₅	L_2	2	6M
	b	Wri	ite the applications of conducting polymers.	_			
			UNIT-V	CO5	L2		4M
10		Exp	lain the various possible electronic transiti				
		abso	plain the various possible electronic transitions occurs in a molecule by orbing the UV-Visible radiation.	C O 6	L2	1	0M
			On				
11	a	Wha	or is the use of detector in chromatographic technique and what are				
		the c	different types of detectors used in HPLC technique.	CO6	L2	5	M
	b .	Disc	uss the principle and applications of ID Constant				
			*** END ***	CO6	L2	5	M
			END xxx				